Structure of the heart

Functions of the heart structures

  • ATRIUM: smaller chamber of the heart through which blood enters the heart
  • VENTRICLE: larger chamber of the heart which pushes blood away from the heart
  • AORTA: major artery carrying blood away from the left ventricle
  • VENA CAVA: main vein returning blood to the right atrium
  • CORONARY ARTERIES: the first vessels to branch from the aorta; they supply blood to the heart muscle

Here is a really really good resource for your learning.

http://inspirahealth.com/templates/animations/heartanat.swf

The coronary artery

THE CORONARY ARTERIES branch from the aorta as soon as it emerges from the heart. They deliver oxygenated blood the the heart muscle.

Coronary artery disease (or coronary heart disease) involves the build up of deposits in these crucial vessels. This reduces and sometimes completely blocks the flow of blood resulting in a heart attack.

How does blood travel through the heart?

  1. deoxygenated blood returning from the body enters the heart through the superior vena cava and inferior vena cava.
  2. blood passes into the right atrium and right ventricle.
  3. right ventricle pushes the blood through the pulmonary arteries.
  4. blood passes through the lungs where it loses carbon dioxide and picks up oxygen.
  5. this oxygenated blood returns to the heart via the pulmonary veins.
  6. blood enters the left atrium and left ventricle.
  7. the left ventricle pushes the blood out through the main artery, the aorta.
  8. blood travels to all parts of the body where it delivers oxygen and picks up carbon dioxide.

Click to see this process in animation

Double circulation of our blood circulatory system

Double Circulation of the Blood refers to the passage of the blood firstly through the lungs (the pulmonary circulation – where it picks up oxygen and releases carbon dioxide) and then through the body (the systemic circulation) where it delivers its cargo of oxygen and picks up carbon dioxide.

These two circuits are powered by different sides of the heart. The right side of the heart pushes the blood at relatively low pressure through the lungs. The left side of the heart pushes the blood at relatively high pressure through the whole body.

How does our tasting sensory organ work?


Bits and pieces about our senses of taste

  • Taste and smell are chemical senses. They give us information about the chemical composition of our surroundings. Taste is an immediate sense – a final checkpoint for the acceptability of food before it enters the body. Smell is a more distant sense allowing us to detect small concentrations of airborne substances.
  • Taste and smell only separated when animals moved to land. Since in the sea, all chemicals are dissolved in the same medium (water) there is no need for two separate senses. Fish and other sea creatures have one general chemical sense.
  • Taste is not just in the mouth. Catfish have chemoreceptors all along their body (a catfish is like a giant tongue), and flies have receptors on their feet so that they can tell immediately upon landing whether an object is good to eat.
  • Taste is a complex mixture of flavours and aroma, or smell.
  • The receptors for the human sense of taste are located on the tongue and on the soft palate. There are just five stimuli to which these receptors respond.

……………………………………………………………………………………….

The traditional view is that tastes are detected on different parts of the tongue (see the taste map opposite). Receptors for each taste are located in taste buds in specific areas of the tongue and each area can only detect one particular taste.

However, more recent research suggests that this may not be the case. The taste buds are still found in the same areas on the tongue but each one can detect all five tastes (sweet, sour, bitter, salt and umami). The brain is able to recognise which receptors are being stimulated and this goes towards the flavour sensation that we experience. The way in which we taste foods and perceive flavours is clearly very complex.The traditional view is that tastes are detected on different parts of the tongue (see the taste map opposite). Receptors for each taste are located in taste buds in specific areas of the tongue and each area can only detect one particular taste.

Our sense of smell also makes up a big part of how well we ‘taste’ food. Flavour molecules in the food enter the air in the nose and are detected by millions of receptors that feed information to the brain. Chewing helps to transfer more odour from the mouth to the back of the nose. The area which is sensitive to smell is located at the back of the nose where several million receptor cells per square centimetre respond to thousands of chemicals in the food.

Sight plays an unexpectedly important role in our perception of flavours. The taste of a colourless, shapeless food is extremely difficult to recognise. We may need visual “clues” to enable us to identify taste and flavour accurately.

The brain interprets signals from taste, smell and even vision before turning them into an impression of the food’s taste. Different people will find different tastes nice or unpleasant. Flavourings are added to food products to give, enhance or intensify flavour.

……………………………………………………………………..

Learning materials

냄새맡기?

킁킁킁..

코의 겉모양은 뭉툭하지만 4천여 가지나 되는 냄새를 판명할 만큼 예민하고 섬세하며 일정 수준의 자극이 닿아야 냄새를 느끼게 되는 것이 특징이다. 냄새를 맡게 되는 과정을 살펴보면 공기 중에 퍼져 있는 냄새 분자가 콧속으로 들어와서 콧속 점막의 수용체와 결합되면 자극이 후각신경을 통해 뇌에 도달되어 냄새 분자를 감지하여 구별할 수 있게 된다.
냄새를 맡는 섬모는 점막에 길게 나와 있다. 이 섬모가 직접 냄새를 맡는 것은 아니다. 이 섬모의 끝에는 지방이 뭉쳐져 있다. 공기 중에 있는 냄새는 기체로서 공기 중에 떠돌아다닌다. 공기 중에 떠돌아다니는 냄새 분자가 이 섬모에 닿아서 지방층과 접촉하게 된다. 조금 더 정확히 말하면 냄새 분자가 지방층에 녹아서 점막에 있는 신경세포가 이를 감지하게 된다. 당연히 물 속에서라면 사람들은 냄새를 맡지 못하게 된다. 이 신경세포가 감지한 정보는 뇌에서 판독되어 우리는 냄새를 지각하게 된다.

공기중에 떠 있는 냄새를 느끼기 위해서는 먼저 냄새 물질이 코에 있는 후각조직의 얇은 점막층에 닿아야 한다.이 점막은 양쪽 콧구멍 위쪽에 있다. 면적은 약 2.5㎠에 불과하지만 5백만∼1천만개의 후각세포가 이곳에 있다.

인간의 코에는 약 500만개의 후각세포가 있다. 코가 발달했다는 개는 후각세포가 2억 2,000만개로 인간의 40배가 넘는다. 이론상 인간은 10의 23승 이라는 천문학적인 종류의 냄새를 감지할 수 있다. 그러나 뇌의 후각중추에는 이런많은 종류의 냄새에 대한 정보를  저장해 둘 만한 공간이 없어 실제로 인간이 느낄 수 있는 냄새의 종류는 이보다 훨씬 적다.  인간은 원래 1만여가지의 냄새를 가릴 수 있는 능력을 가지고 있었으나,  문명발달로  인한 감각기관의 쇠퇴로 현재는 약 2,000가지 냄새를 구별할 뿐이라는 주장도 있다.

후신경세포는 냄새물질이 닿으면 뇌로 신호를 전달하는 역할을 한다. 이 후각 작용에 걸리는 시간은 대략 0.2∼0.3초 정도.점막층의 크기와 후신경세포의 수는 사람에 따라 큰 차이가 있다. 냄새 판별 능력이 사람마다 차이가 나는 것은 이 때문이다. 후각은 「선택적 피로 현상」이란 특성을 갖고 있다.쉽게 둔감해지는 것이다. 같은 냄새를 맡고 있으면 매초 2.5%씩 민감성이 감퇴돼 1분이내에 70%가 소멸한다.

집을 떠났다가 다시 돌아오면 평소에는 몰랐던 냄새를 느끼는 것도 이런 현상으로 설명된다. 후각의 피로가 풀린 탓이다.

후각은 후각으로만 작용하지 않는다. 후각신경은 대뇌 속의 변연계와도 연결돼 인간의 감정 및 생리현상과 어우러진다.

손숙영 박사는 『변연계는 우리 몸에서 호르몬 분비와 각종 생리기능, 신경전달물질 등을 관장하는 것으로 알려져 있다』며 『인간에게 유익한 향을 가려내 질병 치료에 이용하려는 연구가 활발해지고 있는 이유도 바로 이 때문이다』고 말했다.

코는 우리의 오감 가운데 가장 뛰어나고 능력 있는 감각기관이다.

그런 의미에서 눈이나 귀보다 반응이 약간은 느릴 수 있다. 냄새가 지방에 녹으려면 짧지만 약간의 시간이 필요하기 때문이다. 그리고 좋은 향기를 맡건 아주 고약한 냄새를 맡건 간에 오랫동안 냄새를 맡게 되면 냄새를 맡는 능력은 곧 마비가 된다. 나쁜 냄새를 맡을 때 사람들이 처음에는 코를 쥐지 않을 수 없다가도 잠시 후에는 일을 계속할 수 있는 것도 이 때문이다. 그래서 사람들은 코를 조금은 미련한 감각기관으로 여기는 지도 모른다. 그러나 코는 미련하지만 충성스러운 감각기관임에는 틀림없다.

그렇다면 코없는 곤충은?

어떤 동물이 냄새를 맡는다는 건 결국 공기 중에 포함된 어떤 특정한 냄새 자극을 가진 기체분자가 냄새를 느끼는 감각기에 닿는 걸 뜻한다. 사람은 그 감각기가 코 속의 점막에 있는 후세포에서 느끼지만 곤충의 경우엔 더듬이(촉각, 안테나)에서 후각을 느낀다. 빗살모양으로 가늘게 갈라진 더듬이 끝에 냄새 분자가 닿으면 그걸 느낀다다. 곤충은 페로몬이라고도 하는 의사소통의 목적으로 분비하는 화학물질로 의사소통도 가능하다. 이것이 바로 냄새를 내 더듬이끼리 서로 비비면서 받아들이는 것이다. 한 나방은 5km 밖의 암컷이 분비하는 페로몬도 감지한다고 한다.

If you wish to find this out in English… CLICK HERE

Cellular Respiration

Metabolism

The relationship between photosynthesis and respiration. The synthesis of ATP and ADP and inorganic phosphate, and its role as the immediate source of energy for biological processes.

  • ATP is required for endothermic processes, but can be re-synthesized when coupled to exothermic processes.
  • ATP is synthesized across the inner membranes of the mitochondria and chloroplasts, hence they are adapted to give the maximum surface area. AT[ase enzymes are powered by a proton gradient that provides the energy for ATP synthesis.
  • NADH (NADPH is used in photosynthesis) and FADH2 are reduced co-enzymes that are used to carry electrons to a different part of the organelle.

Cellular Respiration

Respiration as the process by which energy in organic molecules is made available for other processes within and organism. The structure and role of mitochondria in respiration. The biochemistry of aerobic respiration only in sufficient detail to show that:

  • Glycolysis involves the oxidation of glucose to pyruvate with a net gain of ATP and reduced NAD. Pyruvate combines with co-enzyme A to produce acetyl co enzyme A.
  • Acetyle coenzyme A combines with four-C molecule to produce six-C molecule which enters Krebs production of ATP and reduced coenzyme (NAD or FAD).
  • Synthesis of ATP is associated with the electron transport chain.

Learn the 4 stages of aerobic respiration

  1. Glycolysis (in the cytosol)
  2. The link reaction in the matrix: pyruvic acid reacts with coenzyme A to form Acetyl coenzyme A and release CO2
  3. Kreb cycle in the matrix
  4. Electron transport chain in the cristae.

rE: Elizabeth’s Question

I really need help on the Exploring space thing, I’ve done everything else it’s just the exploring space thing that I need help with, I looked on the blog and it said something about Galelio( not sure how you spell it) So does that mean Galelio was the first investigation thing(probe)? On google it says stuff like the telescope on Wiki Answers. Which one’s right? Is any of them right??

—————————————————————————————-

Here is my answer for the question. Elizabeth, Galileo is the name of a probe which was launched in 1995 to observe the space. The difference between space probe like Galileo and telescope is that space probe stays in space but telescope is placed in Earth. As the other article says, the space probe provides us with vivid picture since the space is vacuum. My question in the book is asking you “where they went and what they found out”.

Galileo travels around space and it has also entered Jupiter’ atmosphere.

So it went to Jupiter and Venus. Throughout its long journey, Galileo has sent  data(information) about solar system back to Earth.

But  Galileo plunged into Jupiter’s crushing atmosphere on Sept. 21, 2003. The spacecraft was deliberately destroyed to protect one of its own discoveries – a possible ocean beneath the icy crust of the moon Europa.

Galileo changed the way we look at our solar system. The spacecraft was the first to fly past an asteroid and the first to discover a moon of an asteroid. It provided the only direct observations of a comet colliding with a planet. Galileo was the first to measure Jupiter’s atmosphere.

Don’t really know if it was the first space probe ever.